

Contribution ID: 146 Type: **Oral presentation (paper for Ironmaking & Steelmaking special issue)**

Biochar utilization in DRI-based EAF steelmaking

Wednesday 13 May 2026 12:20 (20 minutes)

Utilizing biochar in electric arc furnace (EAF) steelmaking has become a crucial step towards reducing fossil CO₂ emissions. The present research examines the interaction between V₂O₅ and TiO₂-containing EAF slag and pinebark-derived biochars, which were pyrolyzed at two different temperatures (600 °C and 800 °C). Optical dilatometry (OD) and thermogravimetry (TG) studies, supported by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) characterization techniques, are utilized to elucidate the interaction. OD and TG were conducted by heating the carbonaceous material slag module at a rate of at least 10 K/min to 1500 °C in an inert atmosphere, followed by a 30-minute hold. This research focuses on understanding the following aspects of the interaction between the slag and the biochar: (1) the effect of pyrolysis temperature, (2) the effect of biochar structure, and (3) the impact of slag B2 basicity, FeO, V₂O₅, and TiO₂ on the interaction. The preliminary results indicate that (1) the interaction between slag biochar and FeO is enhanced with an increase in slag FeO concentration and reduction in slag B2 basicity, and (2) vanadium is involved in solid solution formation with iron metallic droplets.

Speaker Country

Sweden

Speaker Company/University

Luleå University of Technology

Primary author: SEENIVASAN, Gangadharan

Co-authors: ANDERSSON, Anton (Luleå University of Technology); AHMED, Hesham (Luleå University of Technology); SUNDQVIST ÖQVIST, Lena (Luleå University of Technology)

Presenter: SEENIVASAN, Gangadharan

Session Classification: Recycling, circular economy and reduction of environmental impact in steelmaking II

Track Classification: EEC 4 - Environmental and Sustainability Issues: EEC 4.B Integration of renewable energy sources in electric steelmaking