

Contribution ID: 143 Type: **Oral presentation (paper for Ironmaking & Steelmaking special issue)**

Iron Ore Smelting System Using a Sustainable Coal-Based Direct Reduction and CO₂ Sequestration

Wednesday 13 May 2026 09:10 (20 minutes)

This study presents an innovative system developed within the AdriatiCO₂ Project for the direct reduction of iron ore via a smelting process. The system substitutes conventional coking coal with sustainable carbon sources and/or biochar—a renewable reducing agent produced from biomass pyrolysis—and integrates efficient CO₂ capture to minimize the carbon footprint of steelmaking.

In the designed high-temperature reactor, the reducing agents act as both a reductant and an energy supplier. Its high reactivity and low impurities facilitate efficient iron oxide reduction while minimizing the slag formation. The resulting CO₂ emissions are captured using post-combustion sequestration techniques, such as amine scrubbing or mineral carbonation, to ensure near-zero emissions.

Preliminary assessments indicate this approach could reduce CO₂ emissions by up to 80% compared to traditional blast furnace methods. Furthermore, the use of biochar derived from agricultural or forestry waste supports circular economy principles by valorizing biomass residues. The AdriatiCO₂ Project will optimize reactor design, biochar properties, and CO₂ sequestration efficiency to enable industrial scalability. This system represents a viable transitional pathway toward greener steel production, aligning with global decarbonization goals while maintaining cost-effectiveness and material performance.

Speaker Country

Italy

Speaker Company/University

Politecnico di Milano

Primary authors: FIORINI, Aldo (Marcegaglia); MAPELLI, Carlo (Dipartimento di Meccanica - Politecnico di Milano); Prof. MOMBELLI, Davide (Politecnico di Milano - Dipartimento di Meccanica); DALL'OSTO, Gianluca (Politecnico di Milano); FERRAIUOLO, alessandro (Marcegaglia Ravenna)

Presenters: MAPELLI, Carlo (Dipartimento di Meccanica - Politecnico di Milano); DALL'OSTO, Gianluca (Politecnico di Milano)

Session Classification: Integration of Renewable Energy & Biochar Applications

Track Classification: EMECR: EMECR 4. Circularity and by-product management in steel industry