

Contribution ID: 156

Type: Keynote Presentation

Sustainable steelmaking route for mitigation of CO2 emissions: Transition from blast furnace (BF) to electric smelting furnace (ESF)

Monday 11 May 2026 11:10 (20 minutes)

It has been known that approx. 7% emissions of CO2 arises from the steel industry sector. Hence, many steel companies are trying to develop the electric arc furnace (EAF) and/or electric smelting furnace (ESF) steelmaking processes instead of blast furnace (BF) and basic oxygen furnace (BOF) integrated routes by employing high amounts of hydrogen gas direct-reduced iron (H2-DRI) to mitigate CO2 emissions. The high-grade iron ores (Fe>68%) are economically used in EAF, whereas low-grade iron ores (Fe<65%) are targeted to be used in ESF. The integrated steel mills have focused on the ESF process by keeping conventional BOF to produce high-end quality products. The H2-DRI will be charged in ESF in conjunction with fluxes and carbon sources, producing hot metal. Using solid carbon alone as a reductant, FeO reduction proceeded through three distinct stages: incubation, steady state, and degradation, forming a characteristic sigmoidal curve. The carbon requirement for complete FeO reduction and at least 3wt% carbon in hot metal (HM) was calculated as 66 kg-carbon/ton-HM. Introducing a hot heel with dissolved carbon accelerated FeO reduction, lowering the FeO concentration to approximately 3wt% in the slag and producing hot metal with 2.8wt% C. Also, it was confirmed that Si transfer from slag to molten iron under ESF conditions occurs through the SiO2 reduction reaction, which produces SiO gas at the slag/metal interface, and the Si pick-up reaction, in which the SiO gas reacts with carbon in the molten iron. We performed a kinetic analysis to evaluate how temperature, slag basicity, and sulfur content in hot metal influence the SiO2 reduction and Si pick-up rates at the slag/metal interface. The current study provides fundamental data for optimizing slag design to achieve rapid FeO reduction, carburization as well as silicon control in ESF.

Speaker Country

Korea South

Speaker Company/University

Hanyang University

Primary author: Prof. PARK, JOOHYUN (Hanyang University)

Presenter: Prof. PARK, JOOHYUN (Hanyang University)

Session Classification: Ongoing Research in Electric Steelmaking I

Track Classification: EEC 6 - Research and Development: EEC 6.C Future directions and emerging technologies in the field