

Contribution ID: 72

Type: **Poster Presentation**

From Scrap to Safety: Low-CO₂ Steels in Automotive Applications

Monday 11 May 2026 17:50 (2 minutes)

Steel production accounts for approximately 7–9% of global CO₂ emissions, making it one of the most critical industrial sectors in the transition toward climate neutrality, a strategic objective of the European Union by 2050. To reduce environmental impact, many steelmakers are converting traditional Blast Furnace–Basic Oxygen Furnace (BF–BOF) routes to more sustainable technologies such as the Electric Arc Furnace (EAF), which is primarily based on scrap recycling and supplemented with DRI (Direct Reduced Iron), HBI (Hot Briquetted Iron) and pig iron.

However, increasing the scrap content results in higher concentrations of tramp elements, particularly copper (Cu) and tin (Sn), which can negatively affect steel performance by altering microstructure and reducing formability, weldability and fracture resistance. This challenge is especially relevant for automotive applications, where safety, reliability and lightweighting requirements are extremely demanding.

In this context, the European RFCS project “Safe&Clean”, coordinated by EURECAT and involving ten industrial and academic partners, aims to characterize low-CO₂ steel sheets produced through innovative processing routes and compare them with equivalent grades manufactured via conventional BF–BOF production. The experimental work focuses on two advanced high-strength steels for automotive structures: DP780 (provided by Salzgitter) and H550MS (provided by SSAB). These materials will be examined through comprehensive chemical, microstructural and mechanical characterization, as well as functional testing including crashworthiness, fatigue resistance and structural integrity under quasi-static and dynamic loading.

To evaluate real-application behaviour, two demonstrator components will be manufactured by the end-users: a side connector produced in DP780 (CRF) and a lower control arm produced in H550MS (Autotech).

The expected outcomes will support the development of technical guidelines for the industrial adoption of low-CO₂ steels in automotive applications, contributing to the decarbonization of European mobility and promoting a more sustainable and circular steel value chain.

Acknowledgments: We would like to thank the partners of the Safe&Clean project for their contribution

Speaker Country

Italy

Speaker Company/University

Università degli Studi di Torino

Primary author: BUCCI, Stefano (Università degli Studi di Torino)

Co-authors: Prof. CASTELLERO, Alberto (Università degli Studi di Torino); Dr MARA, Antonio (Centro Ricerche Fiat S.c.p.a.); Dr MASSA, Fabio (Centro Ricerche Fiat S.c.p.a.); Prof. BARICCO, Marcello (Università degli Studi di Torino); Dr TEDESCO, Michele Maria (Centro Ricerche Fiat S.c.p.a.)

Presenter: BUCCI, Stefano (Università degli Studi di Torino)

Session Classification: Poster session

Track Classification: EEC 9 - Integration with Other Industries: EEC 9.A Synergies between electric steelmaking and other industries (e.g., automotive, construction)